

The Principles of Automatic Control Lab #3 (online)

Department of Automation Dec, 2022

Frequency-Response Analysis Review

- Definition of System Frequency-Response
- Bode Diagrams

Control Systems Design by Frequency Response

- Lead Compensators
- Lag Compensators
- Lead-Lag Compensators

CB1: Inverted Adder

CB2: Inverted Amplifier #1

CB3: Inverted 1st-Order Delay #1

CB4: Inverted 1st-Order Delay #2

CB5: Compensator CB6: Inverted Amplifier #2 CB7: User-Defined Network CB8: Inverted Integrator

 V_{ref} Signal Source Scheme AD2-SCOPE CH1+ is fixedly connected to V_{ref}

SW9:

CB9: Inverter (Always Active)

 $V_{fdbk} = TP8$

OFF:

Output Signal Observation Scheme AD2-SCOPE CH2+ can be selectively switched

TP9

PID Parameters Tuning

When you are designing a PID controller for a given system, follow the steps shown below to obtain a desired response.

- 1. Obtain an open-loop response and determine what needs to be improved
- 2. Add a proportional control to improve the rise time
- 3. Add a derivative control to reduce the overshoot

上海交通大學

iao Tong University

- 4. Add an integral control to reduce the steady-state error
- 5. Adjust each of the gains K_p , K_i , and K_d until you obtain a desired overall response.

上海交通大学 Shanghai Jiao Tong University

How to Draw the Bode Diagram for a Relatively Complex System

Traw the Bode diagram for the following TF:

$$G(j\omega) = \frac{10(j\omega + 3)}{(j\omega)(j\omega + 2)[(j\omega)^2 + j\omega + 2]}$$

Bode Diagram Features

- Relationship between system type and logmagnitude curve
 - Type 0, Type 1, Type 2
 - Kp, Kv, Ka

Control Systems Design by Frequency Response

Basic characteristics of different compensation

- Lead compensation (b)
- Lag compensation
- Lag-lead compensation

(C)

(d)

Characteristics of lead compensators

Lag Compensation

Characteristics of lag compensators

1)

$$G_c(s) = K_c \beta \frac{Ts+1}{\beta Ts+1} = K_c \frac{s+\frac{1}{T}}{s+\frac{1}{\beta T}} \qquad (\beta > 1)$$

Lead-Lag Compensation

Characteristics of lead-lag compensators

NOTE: the gain at high frequency!

Lead compensator (ACLab3.m, Krp3=10)

上海交通大學

hai Jiao Tong University

Lead compensator (CB5+CB9, Krp3=10)

DON'T run into saturation!

上海交通大學

Lead compensator (CB5+CB9, Krp3=10)

Un-compensated Dynamic Response

上海交通大學

ghai Jiao Tong University

Un-compensated (Krp1=10, Krp4=8)

Un-compensated Response by Matlab 上海交通大學 i Jiao Tong University

1.6 System: sys2 Peak amplitude: 1.57 Overshoot (%): 56.8 1.4 At time (seconds): 0.221 1.2 System: sys2 Settling time (seconds): 1.42 Amplitude 0.6 0.4 0.2 0 0.5 1.5 2 2.5 0 1 Time (seconds)

Step Response

Un-compensated (ACLab3.m, Krp1=10, Krp4=8)

OL Bode plots by Matlab Un-compensated

Un-compensated (ACLab3.m, Krp1=10, Krp4=8)

上海交通大学 Shanghai Jiao Tong University

Compensated Dynamic Response

Nation With Market With Table Stores 1 Store With With With With Stores Stores With With With Stores Store With With With With Stores Stores With With Stores Store Stores With With With Stores Stores With With Stores Stores With With Stores Stores With With Stores Store With With Stores Stores Stores Trigger With With Stores Stores With With Stores Store With With Stores Stores Stores With Stores With Stores With Stores Store With Stores With Stores Stores With Stores With Stores With Stores With Stores Cold With Stores With Stores Stores With Stores With Stores With Stores With Stores Cold With Stores Store With Stores With Stores With Stores With Stores With	♥ WaveForms (new workspace /orkspace Settings Window	e) Heln						~ <u>~</u> ~ }	
Egyper Wil 9/12-00 Color HT Spertragen Spertragen SJ Astigens Freisierher Data Maximunals Leging Ando A Lurens Yourus Nete Digital Resurcedus Stephen Wil 9/12-00 Color HT Spertragen SJ Astigens Freisierher Data Maximunals Leging Ando A Lurens Yourus Nete Digital Resurcedus Stephen Wil 9/12-00 Color HT Spertragen SJ Astigens Freisierher Data Maximunals Leging Ando A Lurens Yourus Nete Digital Resurcedus Color HT Spertragen SJ Astigens Freisierher Data Maximunals Leging Ando A Lurens Yourus Nete Digital Resurcedus Color HT Spertragen SJ Astigens Freisierher Data Maximunals Leging Ando A Lurens Yourus Nete Digital Resurcedus Color HT Spertragen SJ Astigens Freisierher Data Maximunals Leging Ando A Lurens Yourus Nete Digital Resurcedus Color HT Spertragen SJ Astigens Freisierher Data Maximunals Leging Ando A Lurens Yourus Nete Digital Resurcedus Color HT Spertragen SJ Astigens Freisierher Data Maximunals Leging Ando A Lurens Yourus Nete Digital Resurcedus Color HT Spertragen SJ Astigens Freisierher Data HT Spertragen SJ Astigens Freiser Color HT Spertragen SJ Astigens Freiser HT Spertragen SJ Astigens Freiser Color HT Spertragen SJ Astigens Freiser HT Spertragen SJ Astigens Freiser HT Spertragen SJ Astigens Freiser Color HT Spertragen SJ Astigens Freiser HT Spertragen SJ	Yelcome 🔐 Help 💽 S Sile Control View Window	icope 1 🗷							
Xd C2 C1	Export +XI +XIZ 3D +Z00	om FFT Spectrogram Spectrog Mode: 🛞 Repeated	ram 3D Histogram Persistence D ▼ Normal ▼ Source: Trigg	ata Measurements Logging er 1 🔻 Condition: 📑	Audio X Cursors I Cu Falling - Level	ursors Notes Di L: OV	gital Measurements		
2 C: 1.11 V C: 1.11 V C: 1.13 V	Y Araed C1 C2 8	Z 8192 samples at 4 kHz 2021-12				Q 1	I I IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIII	n: 800 ms 200 ms/di 1 ns hannel	
	2	C2: 1.11 V C1: 1.033 V					✓ Channe Offset: Range: ✓ Channe Offset: Range:	el 1 (1±) -800 mV 200 mV/di el 2 (2±) -800 mV 200 mV/di	V V V V V V V
	6								
	4								
	2								
↓ − 0.2 s 0.2 s 0.4 s 0.6 s 0.8 s 1 s 1.2 s 1.4 s 1.6 s 1.8 s	0.2	0.2 s 0.4	s 0.6 s 0.8	s 1s _	1.2 s 1.4	s 1.6 :	s 1.8 s		

Lead compensated (Krp3=10, Krp4=8)

Compensated Response by Matlab

Step Response 1.2 0.8 Amplitude 0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Time (seconds)

上海交通大學

Tong University

Lead compensated (ACLab3.m, Krp3=10, Krp4=8)

OL Bode plots by Matlab compensated

Alternative Krp3 Values

Compensated Response by Matlab with Krp3=2

Lead Compensated (ACLab3.m, Krp3=2, Krp4=8)

Compensated Response with Krp3=2

W WaveForms (new workspace)	- 🗆 X
Workspace Settings Window Help	
File Control View Window	
Export +XY +XYZ 3D +Zoom FFT Spectrogram Spectrogram 3D Histogram Persistence Data Measurements Logging Audio X Cursors Y Cursors Notes Digital Meas	surements
Source: Irigger I Condition: Falling Level: U.V.	
	Position: 800 ms
1.6 X' 230.6 mg	
1.4	Options ▼ Add Channel ▼
1.2 C2: 1.121 V C1: 1.032 V	✓ Channel 1 (1±) 0ffset: -800 mV Range: 200 mV/div ∨
	Channel 2 (2±) 0ffset: -800 mV → Banze: 200 mV/div →
0.4	
0.2	
-0.2	
⊻ −0.2 s 0 s 0.2 s 0.4 s 0.6 s 0.8 s 1 s 1.2 s 1.4 s 1.6 s	1.8 s 🗸
Manual Trigger Discovery2	SN:210321A29D14 USB 🥏 Status: OK 🗸 📑

上游交通大學

Tong University

Lead Compensated (Krp3=2, Krp4=8)

Q&A